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The six infinite regular (flag-transitive) polyhedra with finite faces of Grünbaum

and Dress are described as tilings of the P and D periodic minimal surfaces. The

three polyhedra formed by analogous tiling of the G surface are also described.

The nets of these polyhedra are identified. It is shown how these polyhedra, and

the nets they carry, could be found by mining the EPINET database of

structures. The nets of regular three-periodic polyhedra with infinite helical or

zigzag faces are also identified.

1. Introduction

Regular polyhedra play a special role in descriptive crystal

chemistry and they feature prominently in chemistry text

books. In this context, they are usually confined to the Platonic

solids: the regular tetrahedron {3,3}, octahedron {3,4}, icosa-

hedron {3,5}, cube {4,3} and dodecahedron {5,3}. Here the

notation {p,q} indicates that q regular p-gons meet at each

vertex. The modern definition of regularity requires that the

group of symmetries of the polyhedron act transitively on the

flags – a flag being a triplet of a mutually incident vertex, edge

and face.

Many years ago, the infinite polyhedra {4,6}, {6,4} and {6,6}

with faces that are regular plane polygons were added to the

list (Coxeter, 1937); these are sometimes known as the Petrie–

Coxeter polyhedra. Later, Grünbaum (1977) enlarged the

family of regular polyhedra by allowing faces that were skew

polygons that could even be infinite (helices or zigzags).

Shortly thereafter, Dress (1981, 1985) added to Grünbaum’s

list and showed that the enumeration was complete. These

generalized polyhedra are known as the Grünbaum–Dress

polyhedra. A good account of the theory of them has been

given by McMullen & Schulte (1997) and I follow their

notation and nomenclature. There are also related polyhedra,

flag-2-transitive, that have been discussed by Schulte (2004,

2005). Infinite polyhedra are also called apeirohedra

(McMullen & Schulte, 1997).

The motivation for this work is that what appear at first to

be exercises in mathematics often turn out later to be of

relevance to crystallography. For example, periodic structures

such as sphere packings, tilings and minimal surfaces were first

topics in ‘pure’ mathematics but now play an essential role in

crystal chemistry and materials science. Often the transition to

crystallography is hindered by the abstract style preferred by

mathematicians and by the lack of illustrations and informa-

tion such as space-group symmetry and coordinates. This

paper is designed to ameliorate that transition for the regular

periodic polyhedra which are not well known to crystal

chemists. The treatment is informal and no new mathematical

results are presented.

It is instructive first to consider the finite regular polyhedra.

In addition to the planar faces, each polyhedron has Petrie

polygons determined as follows. Take two adjacent edges of a

face. The second edge is common to a second face and

continue for the next edge along that new face. Repeat until

one gets back to the starting vertex. Petrie polygons of a

regular tetrahedron, octahedron and cube are shown in Fig. 1;

these are skew quadrangles, hexagons and hexagons with

angles of 60, 60 and 90�, respectively.

Now, if we don’t mind faces intersecting, we can make five

new polyhedra with the same edges and vertices as the

Platonic solids but with faces that are Petrie polygons. These

new polyhedra are the Petrials of the original and their

Petrials recover the originals. In other words, Petrials are like

duals in that just as the dual of a dual is the original so is the

Petrial of a Petrial. The symbol for the Petrial of {p,q} is {r,q}p

in which r is the number of edges of the Petrie polyhedron.

In the same way, the regular tilings of the plane {3,6}, {4,4}

and {6,3} have Petrials whose faces are infinite zigzags. Their

symbols are {1,6}3, {1,4}4 and {1,3}6.

Recall the basic definition of a polyhedron in the present

context as a family of polygons such that any two polygons

Figure 1
Petrie polygons (orange) of (a) a tetrahedron, (b) an octahedron and (c) a
cube.



have in common either one vertex or one edge (two adjacent

vertices) or have no vertices in common, and each edge is

common to exactly two polygons.

2. Identification of infinite polyhedra (apeirohedra)
with finite faces

In addition to the Petrie–Coxeter regular apeirohedra, there

are three more with finite skew faces (in fact the skew poly-

gons of Fig. 1). These are all tilings with vertex configurations

{4,6}, {6,4} or {6,6} on infinite periodic surfaces. Although they

are well characterized, I have not found a crystallographic

description (space group and coordinates) or even, in some

cases, an illustration of an embedding either of the polyhedra

or of the nets they carry (the 1-skeleton) although the nets of

some were identified by Grünbaum (1977).

These and related structures were identified by finding the

possibilities for tilings {p,q} of a surface in which the symmetry

acts transitively on the vertices, edges and faces (this is a

weaker requirement than that of flag transitivity). This is done

using the Euler equation

f � eþ v ¼ 2� 2g; ð1aÞ

where f, e and v are the number of faces, edges and vertices in

a primitive cell of a tiling of a surface of genus g (also calcu-

lated for a primitive cell) combined with the conservation

equations:

e ¼ vq=2; f ¼ vq=p: ð1bÞ

As the structure is to be periodic and vertex-, edge- and face-

transitive, v, e and f must be compatible with crystallographic

symmetry, i.e. must be dividers of 48, and solutions of equa-

tions (1) that satisfy these conditions are sought. As there has

to be an axis of rotation at each vertex and in the center of

each face, p, q � 6 and pf, qv � 48. Under these restrictions,

there are only four positive integer solutions for (g, p, q, v),

namely:

ðg; p; q; vÞ ¼ ð3; 4; 6; 8Þ; ð3; 6; 4; 12Þ; ð3; 6; 6; 4Þ; ð5; 6; 6; 8Þ:

ð2Þ

With p or q = 6, to have a 3-periodic structure there must be

non-parallel sixfold axes (which in fact must be �33 axes) so the

structures must be cubic. The three cubic minimal surfaces, P,

D and G, with g = 3, are of course well known and known to be

the only ones of this type (Fogden & Hyde, 1992a,b), and are

discussed further below. It appears probable that there is no

structure with g = 5, as a surface of this genus must have a

labyrinth graph with the same genus and there is no known

cubic vertex- and edge-transitive graph of this sort. Note that

the object of this exercise is to find out where to look for the

infinite polyhedra, which are already known to mathemati-

cians. Note also that the conditions given above are necessary

but not sufficient for a structure of the appropriate type to

exist.

Systematic generation of 3-periodic nets in Euclidean space

is being carried out by suitable projections of the nets of

hyperbolic tilings onto infinite periodic surfaces (Hyde et al.,

2006). The results are being recorded in EPINET (http://

epinet.anu.edu.au); accordingly this is the place to look.

The genus 3 structures given in equation (2) are all identi-

fied in EPINET as projections on the P, D and G surfaces of

the hyperbolic regular tilings {4,̀6}, {6,4} and {6,6} and the

RCSR (http://rcsr.anu.edu.au) symbols of the nets they carry

are given. It is known (Robins et al., 2005) that achiral

hyperbolic tilings have exactly one projection on each surface

and it can readily be verified that the tilings of P and D are

flag-1-transitive and the tilings of G are flag-2-transitive (but

of course vertex-, edge- and face-transitive). Accordingly, the

regular infinite polyhedra with finite faces are identified. The

symmetry of the flag-2-transitive tilings of G is such that

adjacent flags are in distinct orbits. Such structures are called

‘chiral’ in the mathematics literature (Schulte, 2004), but of

course the term has a quite different meaning to crystal-

lographers so I avoid its use in this context.

The nets are all either regular or semiregular in the classi-

fication of Delgado Friedrichs et al. (2003a,b) where they are

all described.
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Figure 2
Fragments of the infinite polyhedra described in the text. The top row
illustrates a part of the labyrinth graph of the P, D, G surfaces.



3. Nets and crystallographic description

Units of the structures with finite faces are illustrated in Fig. 2

and some basic properties given in Table 1. Notice that the

duals of {6,4} are {4,6} and that the {6,6} are self dual. The

Petrials of the Petrie–Coxeter polyhedra have infinite (helical)

faces with axes that intersect and are discussed further below.

The Petrials of the regular polyhedra with finite skew faces are

polyhedra of the same sort (see Table 1). The Petrials of the G

tilings do not have regular faces. Also listed in the table is the

vf-net which is the net obtained by linking the centers of the

faces to the vertices of the face. I now comment on the indi-

vidual structures.

{4,6}P. This is one of the Petrie–Coxeter polyhedra. Notice

that the faces are only half the faces of a tiling of cubes, so the

symmetry is lower (a0 = 2a) than that of the net (pcu) it carries.

{4,6}D. This structure has faces that are Petrie polygons of

tetrahedra. It, and the net it carries, have already been

described by Schoen (1970). The polyhedron and the net have

the same symmetry. The Petrial of this net is {6,6}P which

therefore carries the same net and has the same symmetry.

{4,6}G. This structure and its net (bcs) were again described

by Schoen (1970); I believe for the first time. The faces are

skew quadrangles with angles of cos�1(1/3) = 70.5�.

{6,4}P. This is another Petrie–Coxeter polyhedron and

consists of the hexagonal faces of the familiar sodalite struc-

ture; accordingly it has the net (sod) and symmetry of that

structure.

{6,4}D. This structure uses as faces one half of the 6-rings of

the nbo net. Accordingly, the tiling has lower symmetry

(Pn�33m) than that (Im�33m) of the net. It is self-Petrial as the

Petrie operation simply interchanges the roles of the used and

unused rings. The faces are congruent with the Petrie polygons

of a cube.

{6,4}G. The net (lcs) of this structure is interesting from a

number of aspects. The net of the structure contains only

6-rings, but they are of two kinds. Using one set produces an

isohedral simple tiling of infinite tiles (Delgado Friedrichs et

al., 2002). {6,4}G uses the other set of 6-rings. The faces are

skew hexagons with angles of cos�1(�1/6) = 99.6�.

{6,6}P. This structure was also described by Schoen (1970) –

see the remarks on its Petrial {4,6}D above.

{6,6}D. This is a Petrie–Coxeter polyhedron and uses all the

6-rings of the crs net. The three-dimensional (rank 4)1 tiling

that carries this net is the familiar space filling by tetrahedra

and truncated tetrahedra.

{6,6}G. The net of the structure is primitive cubic (pcu) with

a doubled cell and the faces of the tiles are one quarter of the

Petrie polygons. It is lower symmetry than the other G surface

tilings. A fragment of the structure is illustrated by Schulte

(2004).

4. Regular polyhedra with infinite faces

There are six ‘pure’ regular 3-periodic polyhedra with infinite

faces. Three were identified in Table 1 as Petrials of polyhedra

with finite faces. The Petrial pair {1,3}a and {1,3}b carry the

chiral srs net (symmetry I4132) and the faces are either

threefold or fourfold helices as shown in Fig. 3. The faces do

not intersect and their axes correspond to those of the chiral

(in the crystallographic sense) invariant cylinder packings �
and � (O’Keeffe et al., 2001), respectively.
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Table 1
Data for some infinite polyhedra with finite faces.

Entries under ‘Polyh.’ such as {4, 6}P indicate a tiling of the P surface by
quadrangles with six meeting at each vertex. MS refers to the symbols of
McMullen & Schulte (1997) and S.g. refers to the space group of the
polyhedron. The coordinates refer to the origin on an inversion center. Edges
correspond to shortest distances between vertices. The vf-net is the net of
vertices and faces (see text).

Polyh. MS Net S.g. Coords. vf-net Petrial

{4, 6}P {4, 6|4} pcu Im�33m 1/4, 1/4, 1/4 she {1,6}4,4

{4, 6}D {4, 6}6 hxg Pn�33m 0, 0, 0 toc {6, 6}P
{4, 6}G – bcs Ia�33d 0, 0, 0 gar –
{6, 4}P {6, 4|4} sod Im�33m 1/4, 0, 1/2 she {1,4}6,4

{6, 4}D {6, 4}6 nbo Pn�33m 1/4, 1/4, 3/4 toc Self
{6, 4}G – lcs Ia�33d 3/8, 0, 1/4 gar –
{6, 6}P {6, 6}4 hxg Pn�33m 0, 0, 0 pcu-b {4, 6}D
{6, 6}D {6, 6|3} crs Fd�33m 0, 0, 0 hxg-b {1, 6}6,3

{6, 6}G – pcu Ia�33 1/4, 1/4, 1/4 bcs-b –

Figure 3
Fragments of the {1, 3} polyhedra. The faces shown are 32 and 41 helices
with axes shown as cylinders. The net, srs, is the same in both cases.

Figure 4
Part of the {1, 4}.,*3 polyhedron. The net is nbo.

1 ‘Rank 4’ means that there are four kinds of element: vertices, edges, faces
and tiles.



The final pure structure is {1,4}.,*3 in the notation of

McMullen & Schulte (1997), who should be consulted for an

explanation of the notation, and was first described by Dress

(1981, 1985); see also Schulte (2005). This carries the achiral

nbo net which, like all cubic structures, has 31 and 32 axes.

Choosing as faces helices around axes of one hand produces

the polyhedron with symmetry I432. The axes of the faces

correspond to those of the chiral invariant cylinder packing

with symbol � (O’Keeffe et al., 2001) as shown in Fig. 4.

There are also six three-periodic polyhedra derived

(‘blended’) from the two-periodic nets by replacing the poly-

gons (triangles, squares or hexagons) by helices. In the nota-

tion of McMullen & Schulte (1997), this is indicated by

appending #{1} to the symbol for the appropriate two-peri-

odic structure. Thus from {3,6} and its Petrial {1,6}3, we get

the Petrial pair {3,6}#{1} and {1,6}3#{1}. The structures are

shown in projection in Fig. 5. Notice that the structures

derived from {6,3} are now six-coordinated. In {6,3}#{1}, sets

of six helical faces, three 61 and three 65, are co-axial as shown

in Fig. 6. Each edge is common to a 61 face and a non-coaxial

65 face.

The symmetries and nets of all these structures are identi-

fied in Table 2. Notice that, as for polyhedra with finite faces,

the symmetry of the nets is sometimes higher than the poly-

hedron that carries it. In particular, the nets of the blended

polyhedra derived from {3,6} and {4,4} are actually cubic. The

net of the latter is that of diamond (dia) and a fragment of

{1,4}4#{1} is shown in Fig. 7 to illustrate this point.

5. Concluding remarks

There are two tasks of interest to the crystal chemist in

connection with crystal nets which are special kinds of graph

(Delgado-Friedrichs & O’Keeffe, 2005). The first is the

systematic generation of structures, and in this endeavor the
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Figure 5
Projections of the blended polyhedra. Top {3, 6}#{1}: numbers are
elevations in multiples of c/3. Middle {4, 4}#{1}: numbers are elevations
in multiples of c/8. Bottom {6, 3}#{1}: numbers are elevations in multiples
of c/4.

Figure 7
Four zigzag faces of {1, 4}4#{1} with a common vertex. Left: view down
[001]. Right: the same tilted slightly off axis. Each black-colored edge is
common to two zigzags.

Figure 6
Part of one column of helical faces in {6, 3}#{1}. 65 red, orange and
yellow. 61 blue and green.



approach of starting from tilings, either of the hyperbolic

plane as in EPINET or from tiling Euclidean space (Delgado-

Friedrichs et al. 1999; Delgado-Friedrichs & Huson, 2000) has

been particularly fruitful. One lesson to be learned from the

present study is that nets can arise in, at first sight, surprising

contexts; thus one finds pcu (the net of the primitive cubic

lattice) carried by a tiling of the G surface (as in {6 ,6}G) and

the harvest of EPINET turns out to be much richer than might

have been supposed.

The second task is that of establishing a taxonomy of nets,

and here it has been found again useful to consider nets as

derived from rank-4 tilings of Euclidean space. But now we

have to play by different rules, ones that lead to a unique

description of a net (contrast the multiple structures carrying

nets such as pcu, hxg and srs described above). One rule is that

normally the only candidates for faces are cycles of the graph

that are not the sums of smaller cycles. Depending on context,

these are known as relevant cycles or strong rings (Delgado-

Friedrichs & O’Keeffe, 2005). Notice that the Petrie polygons

of Fig. 1 are not strong rings, nor are the infinite polygons in

this paper. We also require the tiles to be finite and the tiling to

have the same symmetry as the net. These rules lead to a

unique (natural) tiling for the nets of the infinite polyhedra

described here. For lower-symmetry nets, further rules may be

necessary (Blatov et al., 2007). Grünbaum (2003) has pointed

out that, for generality, one should include e.g. structures with

edges of zero length so that distinct vertices are represented

by the same point. As atoms can never occupy the same point,

such structures are probably less relevant to crystal chemistry.

In Table 3, I summarize the transitivity properties of the

natural tilings carrying the nets of this paper. It may be seen

that pcu is the only flag-transitive such tiling, and indeed it is

easy to show that it is the only one in general. It is for this

reason that the definition of regularity for nets was given a

more relaxed condition which corresponded in fact to nets

whose natural tilings were vertex-, edge-, face- and tile-tran-

sitive (Delgado Friedrichs et al., 2003a).
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Table 2
Data for some infinite polyhedra with infinite faces presented as in
Table 1.

MS symbol Net S.g. Coords. Petrial

{1, 6}4,4 pcu Im�33m 1/4, 1/4, 1/4 {4, 6|4}
{1, 4}6,4 sod Im�33m 0, 1/2, 1/4 {6, 4|4}
{1, 6}6,3 crs Fd�33m 0, 0, 0 {6, 6|3}
{1, 3}a srs I4132 1/8, 1/8, 1/8 {1, 3}b
{1, 3}b srs I4132 1/8, 1/8, 1/8 {1, 3}a
{1, 4}.,*3 nbo I432 0, 1/2, 1/2
{3, 6}#{1} pcu R�33m 0, 0, 0 {1, 6}3#{1}
{1, 6}3#{1} pcu R�33m 0, 0, 0 {3, 6}#{1}
{4, 4}#{1} dia I41/amd 0, 3/4, 1/8 {1, 4}4#{1}
{1, 4}4#{1} dia I41/amd 0, 3/4, 1/8 {4, 4}#{1}
{6, 3}#{1} acs P63/mmc 1/3, 2/3, 1/4 {1, 3}6#{1}
{1, 3}6#{1} acs P63/mmc 1/3, 2/3, 1/4 {6, 3}#{1}

Table 3
Symmetry and transitivity properties of some natural tilings of nets.

Net Symmetry Vertex Edge Face Tile Flag

pcu Pm�33m 1 1 1 1 1
nbo Im�33m 1 1 1 1 2
dia Fd�33m 1 1 1 1 2
srs I4132 1 1 1 1 10
sod Im�33m 1 1 2 1 3
hxg Pn�33m 1 1 2 1 4
crs Fd�33m 1 1 2 2 4
acs P63/mmc 1 1 2 2 6
lcs Ia�33d 1 1 2 2 10
bcs Ia�33d 1 1 2 2 16


